[10] (PhD Thesis) Nozhan. Hosseini, "Novel Multi-user Chirp Signaling Schemes for Future Aviation
Communication Applications," June 2020. University of South Carolina(↓Download)
ABSTRACT:
Many wireless communication systems will need to accommodate a larger number
of users in the future. One application in particular in which this is critical is low data rate,
long range communication links with very large numbers of nodes, such as the internet of
things (IoT), possibly the internet of flying things (IoFT), etc. These systems demand
advanced multi-access techniques with minimal multiple access interference (MAI). They
should also be robust to multiple impairments, including multipath channel distortions,
Doppler spreading, and interference. Chirp waveforms are one type of waveform set that
can satisfy future system demands in the presence of these impairments. When the constant
amplitude variety of chirp is used, this exhibits a desirable very low peak to average power
ratio (PAPR). The ridge-shaped ambiguity function of chirp signals can also be useful for
radar and channel modeling (sounding) applications. Hence chirps are promising
candidates for many such applications. Chirps are specified in the IEEE 802.15.4a standard
as chirp spread spectrum (CSS). Another growing application area requiring advanced
communications is aviation. In particular, unmanned aircraft systems (UAS), also known
as unmanned aerial vehicles (UAVs), and “drones,” will in the future operate within
airspace along with commercial, cargo, and other piloted aircraft. The command and
control (C2), or control and non-payload communications (CNPC) link must provide
highly reliable safety critical information for the control of the UAV both in terrestrialbased line of sight conditions and in satellite communication links. Chirp signaling features
make chirp signal sets good candidates to meet CNPC link requirements.
vi
In this dissertation, we investigate multi-user chirp signaling for future aviation
communication and channel sensing systems. We describe the basics of chirp signaling,
chirp sounding, and investigate via mathematical analysis, computer simulations, and some
experiments, the effects of aviation channel-induced non-idealities such as Doppler and
asynchronism on the chirp signaling schemes. We also describe a hybrid design where the
system is not only a communication entity but also does channel estimation (sounding).
We describe methods to increase spectral efficiency and how to avoid multiple access
interference among users (and intersymbol interference for a given user). We also
conducted experiments on chirp channel sounding using a small drone and software
defined radios, and provide some channel characterization results.
The majority of this work, and our major contributions, pertain to detailed
evaluation of performance of multi-user chirp spread spectrum systems under a variety of
conditions. We find, analytically, new expressions for bit error rate performance of binary
coherent and noncoherent chirp spread spectrum signals, and we compare and validate
numerical and analytical results with simulations. These error probability expressions are
general, and can be used for any multi-user chirp signaling set. We also design more
practical sets of chirp signals that out-perform existing chirp signal sets when
synchronization is imperfect, a condition we term quasi-synchronous. These new practical
chirp designs employ nonlinear trajectories in the time-frequency plane. Our new chirp
designs also outperform existing schemes in the presence of Doppler shifts. We provide
examples of air to ground link performance with empirical channel models to illustrate the
superior performance of our proposed designs.
|