Problem
|
ILP model
|
(#variables, #constraints)
|
The associated LP relaxation is
|
UFLP
|
|
(n + mn ; m + n)
|
(n + mn ; m + mn)
|
|
|
Set Covering
|
|
(n ; m)
|
strong"
|
Set Partitioning
|
|
(n ; m)
|
strong"
|
Set Packing
|
|
(n ; m)
|
intermediate" if all constraints are associated with maximal cliques of G(A) (see Stable Set)
|
CFLP
|
|
(n + mn ; m + mn + n)
|
generally \strong",even if tends tobecome \weak" if facilities are equal (see BinPacking)
|
Bin Packing
|
|
|
|
Fixed Charge
|
|
(2n ; n) plus Ax > b
|
weak" depending on M values
|
Stable Set
|
|
(n; m)
|
(n; O(2n))
|
(n; O(m))
|
|
weak"
|
strong"
|
Intermediat
|
|
Vertex Coloring
|
|
(n + n2; n + nm)
|
(n + n2; n + O(n2n))
|
(O(2n); n)
|
|
\weak"
|
\intermediate"
|
\strong"
|
|
ATSP
|
|
(n(n - 1); 2n + O(2n))
|
strong"
|
TSP
|
|
(n(n - 1)=2; n + O(2n))
|
strong"
|